Вы вошли как ГостьПриветствую Вас, Гость
Главная » 2013 » Август » 8 » Легирующие добавки
18:10
Легирующие добавки

Широкое использование сталей в различных отраслях промышленности вызвало активные научно-изыскательские работы в области улучшения качества этих материалов.

Кроме повышения степени очистки сталей от вредных примесей и проведения различной термической обработки готовых изделий, нашли широкое применение различные добавки к стали, повышающие качество и придающие новые свойства. Эти добавки принято называть легирующими, в случае их содержания более 0,2-0,5%.

Легирующие добавки изменяют структуру кристаллической решетки сталей, размер зерна, параметры кристаллической решетки. Как за счет донорного или акцепторного влияния на соседние атомы железа, так и за счет разнице в размерах атомов, их валентности, доступности электронных оболочек предвнешнего электронного слоя. Что оказывает влияние на возможность образования донорно-акцепторных связей атома с атомами железа и неметаллических включений. Большинство легирующих добавок, так или иначе, влияют на распределение неметаллических включений между объемом структурного зерна и приграничным слоем зерна. Например, марганец повышает растворимость углерода в железе и смещает равновесие в сторону образования цементита. При этом, он измельчает структурное зерно и уменьшает толщину и влияние пограничного слоя.

Обычно, сложно установить все аспекты влияния данной добавки на свойства стали. Поэтому, как правило, изменение свойств сталей определяют экспериментальным путем, а механизм влияния добавки на те или иные свойства определяют на основании логики и косвенных исследований структуры и свойств материала. При этом, готовят набор сталей с различным содержанием этой добавки и проводят испытания свойств стали (красностойкость, ударная вязкость, твердость, размер зерна, толщина межзерновых прослоек, электрическое сопротивление и др.).

На основании комплекса этих мероприятий и, конечно же, логики, ранее проведенных исследований других сталей (содержащих данную добавку) и здравого смысла, формулируют механизм влияния добавки на структуру и свойства материала.

Это необходимо, как для лучшего понимания процесса, так и для прогнозирования свойств новых сплавов, составления рецептур материалов с заданными свойствами.

Вот перечень наиболее распространенных легирующих добавок, применяемых в промышленности.

Хром. В названии стали обозначается буквой "Х”. Содержится от 1,5 до 30%. Повышает твердость и прочность, незначительно снижает ударную вязкость и пластичность. Это достигается за счет одновременного измельчения зерна и повышения плотности прилегания структурных зерен, усреднения распределения неметаллических примесей в кристаллической структуре. При высоком содержании хрома, сталь становится коррозионностойкой (нержавеющей), за счет повышения плотности упаковки атомов железа на поверхности материала и уменьшения количества и величины микродефектов, концентрирующих напряжение кристаллической структуры (сколы, облегчающие выход с поверхности катиона железа).

Никель ("Н”). Как и хром, повышает твердость и жесткость стали. Измельчает структурное зерно, незначительно уплотняет кристаллическую структуру, но уменьшает количество микрополостей и дефектов металла, так как является хорошим раскислителем. При этом несколько увеличивается плотность сталей. При содержании более 1% начинает оказывать антикоррозионное действие. Наиболее коррозионностойкие стали содержат одновременно никель и хром. Первое широкое применение нашел для легирования корабельной брони, в 80-е годы 19-го века.

Следует отметить, что и никель и хром повышают минимальную температуру закалки стали, при этом повышая эффективность закалки.

Вольфрам ("В”). Одна из самых ценных и важных добавок к стали. Вольфрам способствует повышению твердости, при этом повышается красностойкость, то есть, способность материала сохранять твердость при высоких температурах. Это имеет огромное значение для режущего инструмента, работающего при больших скоростях резания. При закалке таких сталей требуется сравнительно медленное и равномерное охлаждение иначе сталь поведет и изделие потрескается.

Ванадий ("Ф”). Повышает плотность структуры и дает дополнительную трехмерную сшивку кристаллической решетки. За счет этого достигается повышение твердости и жесткости, но, хотя износостойкость и усталостная прочность остаются на высоком уровне, несколько снижается ударная вязкость. Впервые ванадий нашел широкое применение в конце 19-го века в качестве упрочняющей добавки для режущего инструмента и бронебойных сердечников снарядов крупных калибров.

Кремний ("С”). Вводится специально в количестве более 1%, для увеличения энергии связей в кристаллической решетке. При этом значительно повышается прочность при хорошей вязкости. При этом повышается трехмерная жесткость структуры, что приводит к высокой упругости закаленной стали и повышает коррозионную стойкость при высоких температурах. При большом содержании кремния происходит накопление в структуре стали псевдосолевых структур, что приводит к повышению электрического сопротивления. При содержании кремния 20-40% наблюдается повышение магнитопроводности материала, что используется в электротехнических сталях.

Марганец ("Г”). Способствует повышению растворимости углерода в железе с образованием цементита. При этом, более равномерно распределяются неметаллические примеси, что уменьшает толщины межзерновых прослоек. В результате, содержание марганца в пределах 1-3% приводит к росту твердости и жесткости стали, почти без потери пластичности (упругость увеличивается пропорционально твердости). Содержание марганца значительно больше 3% приводит к существенному росту жесткости стали, при этом пропорционально увеличивается хрупкость. Этого можно несколько избежать при высокой степени очистки стали от серы, кислорода и мышьяка и горячей обработки давлением. Примером изделия с такой обработкой может служить лезвие штык-ножа немецкого карабина Маузер к-98к, времен ВМВ.

При ударных нагрузках на сталь с высоким содержанием марганца, происходит поверхностная пластическая деформация, приводящая к измельчению структуры стали. Это дополнительно повышает твердость материала в области приложения нагрузки. Это используется, например, для изготовления траков гусеничных машин, камнедробилок и прутьев решеток в местах ограничения свободы.

Кобальт ("К”). Представляет собой яркий пример влияния электронов предвнешнего электронного слоя на свойства легируемого сплава. За счет образования координационных связей вокруг атомов кобальта, происходит уплотнение структуры металла и дополнительная сшивка решетки. Это приводит к повышению жаропрочности и увеличению сопротивления ударным нагрузкам. Также улучшает намагничиваемость стали.

В быту встречается в некоторых столовых нержавеющих сталях.

Молибден ("М”). Как и хром, повышает прочность и антикоррозионные свойства, жаростойкость и предел прочности на растяжение. В виду более низкой химической активности, чем железо, при значительной величине координационных связей, повышает сопротивление окислению при высоких температурах.

Легирующие свойства молибдена интенсивно изучались в 40-е годы прошлого века в советском союзе, в связи с дефицитом вольфрама для изготовления режущего инструмента. СССР первым освоил производство быстрорезов содержащих наравне с вольфрамом и молибден.

Титан ("Т”). Сочетание высокой химической активности, низкой плотности электронных орбиталей и валентности, большей, чем у железа, придает титану ценные легирующие свойства. Он прекрасный раскислитель, стабилизирует ближний порядок кристаллической решетки, что способствует прочности структуры и измельчению зерна. Повышает однородность стали и сопротивление коррозии.

Ниобий ("Б”). Легирующий аналог ванадия, повышает равномерность структуры и измельчает зерно уже при содержании в 0,5-2%. Применяется для нормализации структуры и снижения внутренних напряжений в ответственных деталях крупных конструкций. Применяется в основном при низком содержании в стали.

Алюминий ("Ю”). Кроме раскисляющих свойств, обладает способностью снижать коррозию стали при высоких температурах, по механизму аналогичному протекторной антикоррозионной защите. При этом, создает избыток электронной плотности в массе стали, что препятствует термической эмиссии ионов железа. Также повышает плотность упаковки химических связей в структуре стали, за счет небольших размеров и разницы в электроотрицательности с железом.

Медь ("Д”). Увеличивает антикоррозионные свойства при небольшом содержании в стали. За счет структурной ориентации кристаллической решетки. Используется в количестве до 2%, главным образом, в строительных сталях.

Цирконий ("Ц”). Обладая более высокой активностью, чем железо и имея большие размеры атома, равномерно распределяется в структуре, ориентируя ближайшие атомы в трехмерную решетку. За счет этого, можно добиться различной зернистости стали, в зависимости от содержания циркония.

Азот ("А”). Образует в стали твердые нитриды железа, которые растворяются в стали в приграничных слоях структурных зерен, покрывая зерно твердым и хрупким панцирем. При значительном содержании азота, это вызывает сильное повышение хрупкости стали. Поэтому, редко специально вводится в сталь. Широко используется для насыщения поверхностного слоя стали (0,0001-0,1 мм) при азотировании, что увеличивает твердость поверхности. Это применяется для режущего инструмента, подшипников и броневых сталей.

Фосфор ("П”). Редко допускается содержание фосфора в легирующих приделах (0,05-0,2%), так как, он сильно повышает хрупкость стали и снижает усталостную прочность за счет повышения толщины межзерновых прослоек и снижения их прочности. Повышает рыхлость структуры стали и внутренние полости. При этом, улучшает текучести расплавленной стали (улучшает литьевые свойства и обработку в конвертерах), и уменьшает длину стружки при высокоскоростной обработки резаньем. Что важно при автоматической обработки на быстродействующих станках с программным управлением. Это, так называемые, автоматные стали: А20, А40Г, А30, А12 и др. Они идут на изготовление малоответственных деталей на высокопроизводительных металлорежущих станках с автоматической подачей заготовок.

В основной массе сталей всячески борются с высоким содержанием фосфора.

При разработке легированных сталей, следует иметь в виду, что легирующие добавки могут сильно влиять на эффект друг друга, как в одну, так и в другую сторону.

В каждой стали содержится практически вся таблица Менделеева, но, если компонента менее 0,001%, его присутствие принято не учитывать. Углерод не относят к легирующим добавкам, так как, он неотъемлемая часть любой стали.

Некоторые легирующие добавки сильно повышают стоимость стали (вольфрам, кобальт, молибден, титан и др.), а некоторые практически не влияют на стоимость (марганец, хром, алюминий и др.). В промышленности нашли широкое применение низколегированные стали, которые сочетают невысокую стоимость со значительным повышением качества, относительно углеродистых сталей обычного качества.

Для введения легирующих добавок, сталь дополнительно очищают от примесей, иначе, они могут нивелировать эффект легирования.

Категория: Металлургия | Просмотров: 8624 | Добавил: Chemadm | Теги: легированные стали, легирование, свойства сталей | Рейтинг: 4.4/41
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]